Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice.
نویسندگان
چکیده
Acute spinal cord injury (SCI) produces tissue damage that continues to evolve days and weeks after the initial insult, with corresponding functional impairments. Reducing the extent of progressive tissue loss ('neuroprotection') following SCI should result in a better recovery from SCI, but treatment options have thus far been limited. In this study, we have tested the efficacy of minocycline in ameliorating damage following acute SCI in mice. This semi-synthetic tetracycline antibiotic has been reported to inhibit the expression and activity of several mediators of tissue injury, including inflammatory cytokines, free radicals and matrix metalloproteinases, making it a suitable candidate for study. Mice were subjected to extradural compression of the spinal cord using a modified aneurysm clip, following which they received treatment with either minocycline or vehicle beginning 1 h after injury. Behavioural testing of hindlimb function was initiated 3 days after injury using the Basso Beattie Bresnahan locomotor rating scale, and at 1 week using the inclined plane test. Functional assessments demonstrated that minocycline administration significantly improved both hindlimb function and strength from 3 to 28 days after injury compared with vehicle controls. Furthermore, gross lesion size in the spinal cord was significantly reduced by minocycline, and there was evidence of axonal sparing as determined using fluorogold labelling of the rubrospinal tract and by Bielchowsky silver stain. Finally, a comparison of minocycline against the currently approved treatment for acute SCI in humans, methylprednisolone, demonstrated superior behavioural recovery in the minocycline-treated animals.
منابع مشابه
Minocycline Enhance Restorative Ability of Olfactory Ensheathing Cells by Upregulation of BDNF and GDNF Expression After Spinal Cord Injury
Purpose: Spinal cord injury is a global public health issue that results in extensive neuronal degeneration, axonal and myelin loss and severe functional deficits. Neurotrophic factors are potential treatment for reducing secondary damage, promoting axon growth, and are responsible for inducing myelination after injury. Olfactory ensheathing cells (OECs) and minocycline have been shown to promo...
متن کاملMinocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury.
We investigated whether permeability transition-mediated release of mitochondrial cytochrome c is a potential therapeutic target for treating acute spinal cord injury (SCI). Based on previous reports, minocycline, a second-generation tetracycline, exerts neuroprotection partially by inhibiting mitochondrial cytochrome c release and reactive microgliosis. We first evaluated cytochrome c release ...
متن کاملThermostabilized chondroitinase ABC Promotes Neuroprotection after Contusion Spinal Cord Injury
Background: Chondroitinase ABC (cABC), due to its loosening impact on the extracellular matrix scaffold, has been used to enhance regeneration of injured axonal tracts after spinal cord injury (SCI). However, cABC thermal instability at physiological temperature has limited its clinical application. The disaccharide trehalose has been shown to increase the stability of cABC in body temperature....
متن کاملLoss of hsp70.1 Decreases Functional Motor Recovery after Spinal Cord Injury in Mice.
Heat shock proteins (HSPs) are specifically induced by various forms of stress. Hsp70.1, a member of the hsp70 family is known to play an important role in cytoprotection from stressful insults. However, the functional role of Hsp70 in motor function after spinal cord injury (SCI) is still unclear. To study the role of hsp70.1 in motor recovery following SCI, we assessed locomotor function in h...
متن کاملInfluence of Sexuality in Functional Recovery after Spinal Cord Injury in rats
Background: Spinal cord injury (SCI) is a major clinical condition and research is commonly done to find suitable treatment options. However, there are some degrees of spontaneous recovery after SCI and gender is said to be a contributing factor in recovery, but this is controversial. This study was done to compare the effects of sexual dimorphism on spontaneous recovery after spinal cord inj...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain : a journal of neurology
دوره 126 Pt 7 شماره
صفحات -
تاریخ انتشار 2003